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ABSTRACT: A rigorous approach for the analysis of diffraction from quasicrystalline
gratings is presented. Previous methods for determining the diffraction properties of
quasicrystalline gratings have relied on periodic supercell approximations. Our method
exploits the cut-and-project method, which constructs quasicrystals as irrational slices of
higher-dimensional periodic structures onto the physical space. The periodicity in the
higher-dimensional space allows for the application of Floquet’s theorem. The solutions
can then be obtained by solving Maxwell’s equations in the higher-dimensional space and
projecting the results to the lower dimensional physical space. As an example, the method
is applied to a one-dimensional aperiodic grating based on a Fibonacci quasicrystal (QC)
where the results that were generated are shown to be in near-perfect agreement with
those obtained using the supercell approximations.
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The discovery of quasicrystals (QCs) by Daniel Shechtman
was first reported in 1984.1 Dr. Shechtman had observed

5-fold rotational symmetry in the X-ray diffraction pattern of a
metallic solid. The discovery took the field of crystallography by
surprise since, according to the crystallographic restriction
theorem,2 5-fold rotational symmetry was mathematically
forbidden in periodic formations and the accepted belief was
that all crystals possess translational symmetry. Over the next
decade, more observations of forbidden orders of rotational
symmetry were reported and scientists also developed the
theoretical foundations of QCs.3−5 Material scientists consider
the discovery of QCs one of the most significant and surprising
recent developments related to the nature of matter.1 Dr.
Shechtman was awarded the 2011 Nobel Prize in Chemistry
“for the discovery of quasicrystals”.
In recent years there has been immense interest in the optical

and electromagnetic (EM) properties of QCs.6−10 As noted,
QCs lack translational symmetry, but they are deterministic and
possess long-range order as well as higher orders of rotational
symmetry that are forbidden in periodic lattices.2 Due to their
unique properties, quasicrystalline geometries have been
utilized in a wide range of applications such as ultrawideband
antenna arrays,11−13 electronic band gap materials,14 broadband
plasmonic enhancement,10,15 and surface-enhanced Raman
scattering substrates.8

A key challenge in evaluating the EM properties of QCs is
the lack of analytical tools to accurately and efficiently model
them. Traditionally the EM properties of metamaterials and
photonic crystals have been evaluated by exploiting their
translational symmetry (periodicity). This approach signifi-
cantly simplifies the analysis by applying periodic boundary
conditions and only requiring Maxwell’s equations to be solved

for one unit cell, rather than the entire structure. As noted, QCs
are aperiodic and hence they cannot be modeled accurately
using periodic boundary conditions. Currently, the primary
analytical method for QCs is the so-called supercell approach.
The method essentially takes a large segment of the structure
and applies periodic boundary conditions to it.16 Besides the
fact that this approach is very computationally expensive, it can
produce inaccurate results since (1) the method attempts to
capture an infinite structure in a finite segment and (2)
periodicity is artificially introduced into the structure which can
lead to spurious modes.
Quasicrystalline geometries are most commonly generated

from aperiodic tilings.17 The Penrose tiling is probably the best
known example of an aperiodic tiling with 5-fold rotational
symmetry.2 Once the prototile set of an aperiodic tiling is
known, the infinite tiling can be generated either by
successively placing prototiles next to each other according to
specific matching rules which enforce the aperiodicity of the
tiling, or more efficiently by using inflation and substitution
rules.18 A tiling can be converted to a point lattice simply by
placing points at the vertices of the tiling. A more rigorous
method to generate quasicrystalline geometries is the so-called
cut-and-project method.19 The cut-and-project method gen-
erates QC geometries as irrational slices of higher-dimensional
periodic crystals. While mathematically more involved, the cut-
and-project method provides a greater insight since in the
higher-dimensional space, all the properties can be deduced
from the unit cell of the hyperlattice. In ref 20, it was proposed
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that this property of QCs can be exploited to solve the field
equations in the higher-dimensional space where the structure
is periodic and then project the solution onto the real space. As
a proof of concept, the method was used to calculate the band
diagram of a one-dimensional (1D) Fibonacci photonic QC by
applying Bloch’s theorem to the higher-dimensional unit cell,
where the results were verified using transfer matrix
techniques.20

In this paper, we expand the higher-dimensional approach to
calculate the scattering response of dielectric quasicrystalline
gratings. In the higher-dimensional space, the grating is periodic
hence Floquet’s theorem21 can be applied. Using the modified
version of Maxwell’s equations for the higher-dimensional QC,
we derive the appropriate boundary value equations to analyze
the diffraction response of the QC gratings. Our results in
essence permit the analysis of infinite QC gratings using the
rigorous coupled-wave analysis (RCWA)22 method. To verify
the validity of our results, we consider a binary 1D dielectric
grating based on the Fibonacci QC which can also be obtained
as a 1D projection of a two-dimensional (2D) periodic grating.
Our results display almost perfect agreement with those
obtained using a 1D supercell approximation.
Here, it is important to note that, while we use the concept

proposed in ref 20, the problem we are solving is fundamentally
different and more complicated. The problem analyzed in ref
20 was determining the spectra of a photonic QC. It was shown
that using the cut-and-project method, the problem can be
solved by applying Bloch’s theorem to the higher dimensional
lattice. We use the same concept to analyze diffraction from a
quasicrystalline grating, which is a more complicated problem;
first, the modes of the grating are obtained by solving the eigen-
problem based on the higher dimensional lattice, and then the
scattering coefficients are obtained by solving the boundary
conditions to match the incident fields to the eigen-modes of
the grating. As it will be shown, solving the grating problem
requires taking into account all three dimensions of the physical
space, whereas in the case of the photonic QCs, only one
dimension of the physical space is required.

■ RESULTS AND DISCUSSION

Cut-and-Project Method. Before giving a description of
the cut-and-project method, it is helpful to provide some basic
definitions which will be useful later. A crystal is defined as a
solid with a discrete diffraction diagram.2 Mathematically there
is a close relationship between diffraction patterns and the
Fourier transform. The Dirac delta function introduces a
convenient way to represent a set of scatterers as a summation
of infinitesimal points. We start by considering Λ = {d1⃗, d ⃗2, ...}
as a discrete set of points in En, where d ⃗k is an n-dimensional
vector representing the location of the k-th point in Λ. We can
represent this set as the following summation of Dirac delta
functions2

∑ρ δ⃗ = ⃗ − ⃗
Λ

⎯→
∈Λ

x x d( ) ( )
d

k

k (1)

The Fourier transform of a function f(x ⃗), x ⃗ ∈ Rn is denoted
by f(̂s)⃗ and defined by the following integral:

∫ π̂ ⃗ = ⃗ − ⃗· ⃗ ⃗f s f x jx s x( ) ( ) exp( 2 )d
Rn (2)

where j = √−1. It is straightforward to show that the Fourier
integral represents a linear operation. Hence, we can denote it
by and write an equivalent form for eq 2 as

∫ π= ̂ ⇔ ̂ ⃗ = ⃗ − ⃗· ⃗ ⃗f f f s f x jx s x( ) ( ) ( ) exp( 2 )d
Rn (3)

Using the integral in eq 2 it can be shown that (δ(x − a))
= exp(−2πjas) and from the linearity of it follows that the
set of points defined in eq 1 has a Fourier transform given by
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d
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Using eq 4 it can be easily shown that an infinite periodic
lattice will have a corresponding spectra in the Fourier domain,
which is the sum of Dirac delta functions, and therefore, all
solids that contain periodic structure will satisfy the definition
of a crystal. A periodic point lattice is said to possess
translational symmetry, since a translation mapping by any
integer summation of lattice vectors will map the lattice onto
itself. Another property associated with crystals is their
rotational symmetry. The rotational symmetry of a crystal is
defined in terms of the rotational symmetry of its diffraction
pattern. Thus, if the diffraction pattern of a point set is
unchanged by a 2π/n rotation, the point set is said to possess n-
fold rotational symmetry. Here we note an important theorem
regarding periodic lattices in two-dimensional and three-
dimensional space (a proof can be found in ref 2):

The Crystallographic Restriction Theorem. Rotational
symmetries of order five and those greater than six are
impossible for diffraction patterns of periodic lattices existing in
two-dimensional and three-dimensional space.
Until the mid 1980s, it was presumed that all crystals possess

translational symmetry. In 1982, while studying rapidly
solidified aluminum (Al) alloys at Johns Hopkins University,
Dr. Dan Shechtman noticed that the electron diffraction
pattern of certain Al and manganese (Mn) alloys displayed
discrete diffraction and 5-fold rotational symmetry. The discrete
diffraction peaks satisfied the definition of a crystal; however,
based on the crystallographic restriction theorem, 5-fold
rotational symmetry could not be produced by a strictly
periodic lattice. He published his results in 1984,1 which at the
time were highly controversial and met with great resistance in
the academic community. The main reason for this is because
at the time it was assumed that all crystals possessed
translational symmetry. In the following years, his results
were reconfirmed by other groups and new observations of
such solids were made. In later years, this class of materials,
which displayed discrete diffraction patterns but lacked
periodicity, came to be known as QCs.
A Fibonacci QC is an example of a one-dimensional QC. A

Fibonacci sequence can be obtained iteratively from the
alphabet set {A,B}, using the following substitution rule: A →
AB, B → A. Traditionally, Fn denotes the Fibonacci sequence
obtained after n iterative substitutions, starting with F0 = B:18

=

=

=

=

⋮

F B

F A

F AB

F ABA

0

1

2

3

(5)
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Generating a Fibonacci point lattice from a Fibonacci
sequence is accomplished by assigning a thickness α, β to A
and B, respectively, such that α/β = τ, where τ = (1 + √5)/2 is
the golden ratio2 and placing points at all junctions. Figure 1

shows the normalized Fourier transform (magnitude) of a 2585
Fibonacci point lattice corresponding to F17, as defined in eq 5,
evaluated using eq 4. As it can be observed, the Fourier
spectrum consists of a weighted sum of discrete peaks, and
thus, it satisfies the definition of a crystal.
It is important to note that not all aperiodic, deterministic

formations will have discrete Fourier spectra. The Thue-Morse
(TM) aperiodic sequence can be obtained iteratively from the
alphabet set {A,B}, using the following substitution rule: A →
AB, B → BA.23 A complete description of the TM aperiodic
sequence is beyond the scope of this paper and can be found in
refs 2, 18, and 19; however, one important property is that, in
general, the diffraction pattern is mixed, consisting of a singular
continuous spectrum and discrete peaks. The cut-and-project
method can only be used to construct aperiodic geometries
with discrete diffraction patterns and, thus, cannot be applied to
a TM aperiodic sequence. However, it can be applied to two-

dimensional QCs such as Penrose and Ammann-Beenker,
which have been of great interest for a variety of optical9 and
plasmonic7,10 applications.
The cut-and-project method19 constructs a QC lattice in n-

dimensional Euclidean space En with k-fold rotational symmetry
(k > n) as an n-dimensional irrational slice of an integer
hyperlattice in Ek. The k-dimensional Euclidean space is
referred to as the embedding space of the QC.18 We denote
the higher-dimensional space by Sh. In the cut-and-project
method, the hyperlattice is projected onto two orthogonal
subspaces of dimensions n and n − k, which we denote by X
and Y, respectively (Sh = X ⊕ Y). The n-dimensional space X is
referred to as the parallel or external subspace and corresponds
to the physical space. The (n − k)-dimensional space Y is
referred to as the perpendicular or internal subspace and
corresponds to the unphysical space. The QC can be obtained
by taking an n-dimensional slice of the higher-dimensional
hyperlattice at a fixed value of Y parallel to X.
Here it is important to note that while it is always possible to

embed a QC with k-fold rotational symmetry in Ek, k is not
always the minimum dimension for the embedding space. The
minimum dimension of the embedding space for a QC with k-
fold rotational symmetry kmin is

φ=k k( )min (6)

where φ(n) is Euler’s totient function which is the number of
all positive integers less than or equal to n that are relatively
prime to n.18 For example, the Penrose QC has 5-fold
rotational symmetry and it can be embedded in a five-
dimensional space; however, since φ(5) = 4, it can also be
embedded in the four-dimensional space. The difference lies in
the geometry of the unit cells. Embedding a QC with k-fold
rotational symmetry in Ek can be simply accomplished using
hypercubic orthogonal unit cells, whereas if kmin < k, the unit
cell is nonorthogonal. In the case of the Penrose QC, it can be
embedded in the five-dimensional lattice with hypercubic unit
cells or in the four-dimensional space with root lattice A4.

24 A
complete description of the cut-and-project method can be
found in refs 2, 18, and 19. Here we give a brief description of

Figure 1. Normalized Fourier transform (magnitude) of a 2585
Fibonacci point lattice corresponding to F17, as defined in eq 5,
evaluated using eq 4

Figure 2. (a) Periodic geometry of the Fibonacci QC in a 2D plane. (b) Structural parameters that define the 2D periodic hyperlattice.
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the cut-and-project method to generate the 1D Fibonacci QC
from a 2D periodic lattice. Generating a Fibonacci QC from a
Fibonacci sequence is accomplished by assigning dielectric
values εA, εB and thickness α, β to A and B, respectively, such
that α/β = τ.2

The Fibonacci QC can also be obtained as an irrational slice
of a 2D periodic structure. Figure 2a shows the 2D periodic
structure that corresponds to the Fibonacci QC. The lattice
vectors are ae1̂ and ae2̂, where a is the lattice constant and e1̂
and e2̂ are unit vectors along e1 and e2, respectively. The unit
cell is a square with dielectric value εA and side a. Inside the
unit cell there is a square of dielectric value εB and side β
rotated at an angle ϕ, where tan ϕ = 1/τ and

α β
ϕ ϕ

+
+

= a
sin cos (7)

Figure 2b shows a close up of a smaller segment of the 2D
periodic structure with denoted parameters. To obtain the
Fibonacci QC using the cut-and-project method, we start by
defining a new orthonormal basis with unit vectors x ̂ and y ̂
directed along x and y, as shown in Figure 2a. As it can be seen
from Figure 2b, the unit vectors x ̂ and y ̂ are obtained by
rotating unit vectors vectors e1̂ and e2̂ by an angle ϕ. It can
easily be shown that the transformation from the e1̂e2̂ basis to
the ̂ ̂xy basis can be obtained by the unitary mapping M:

τ

τ
τ

=
+ −

⎜ ⎟⎛
⎝

⎞
⎠M

1

1

1
12 (8)

such that

=⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

x
y

e
eM

1

2 (9)

Taking a 1D slice of the 2D structure shown in Figure 2
parallel to x ̂ will generate a Fibonacci QC.25 Since the slice is
taken at an angle of ϕ with an irrational slope of 1/τ it will
densely fill the unit cell. The value of y at which the slice is
taken merely serves as an offset and does not affect the
properties of the slice since the slope is not changed.
The general 1D binary quasiperiodic grating diffraction

problem is depicted in Figure 3. The Cartesian coordinates

(with origin denoted by O) of the physical space are
represented by (x1,x2,x3) with the corresponding unit vectors
x1̂,x2̂,x3̂. We consider a quasiperiodic grating based on the
Fibonacci sequence with thicknesses α and β and correspond-
ing dielectric values εA and εB. For simplicity, we assume that all
materials in the system have permeability of μ0. The grating has

a thickness of h along x3 such that 0 ≤ x3 ≤ h, while the
dielectric variation of the grating is along x1. The grating is
bounded by two different media with refractive indices nI and
nII. A linearly polarized EM plane wave from the nI region is
obliquely incident on the grating at an angle of θ. The wave
vector for the incident field is

θ θ= ̂ + ̂k nk x x[sin cos ]inc 0 I 1 3 (10)

where k0 = (2π)/(λ0) is the free space wavenumber and λ0 is
the free space wavelength. We consider both TE and TM
incident waves. The incident electric field for the TE polarized
wave is Einc,TE = Einc,x2x2̂, where Einc,x2 is defined as

θ θ= − +E jk n x xexp[ (sin cos )]xinc, 0 I 1 32 (11)

We have assumed harmonic fields with ejωt time-dependence,
where ω = 2πf is the angular frequency. The incident magnetic
field for the TM polarized wave is Hinc,TM = Hinc,x2x2̂, where

Hinc,x2 is given by

θ θ= − +H jk n x xexp[ (sin cos )]xinc, 0 I 1 32 (12)

Maxwell’s Equations. In ref 20 it was proposed that the
higher-dimensional translational symmetry of QCs can be
exploited to evaluate their EM properties. In the higher-
dimensional space, the solution domain is reduced to a single
unit cell. Since the higher-dimensional unit cell is periodic, it
can be analyzed using plane wave expansion methods. The
eigenstates of the QC are then obtained by solving Maxwell’s
equations in the higher-dimensional space. The only difference
is the way Maxwell’s equations are applied. In the physical
space, the source-free time-harmonic wave equations are26

ωμ∇ × = −jE H (13a)

ωε∇ × = jH E (13b)

It was shown in ref 20 that higher-dimensional versions of eq
13, which can be applied to periodic hyperlattices are

ωμ∇ × = −jE x y H( , )x (14a)

ωε∇ × = jH x y E( , )x (14b)

where x and y denote the physical and unphysical dimensions,
respectively, and ∇x × denotes the curl operator with respect to
the physical coordinates only. The reason for this is that, as
noted previously, the value of y merely acts as an offset and
does not alter properties of the slice and hence the eigenvalues
of the system. Therefore, eq 14 is not really a higher-
dimensional form of the Maxwell’s equations since the
unphysical coordinates y act as parameters rather than
coordinates.
Equation 14 can be used to evaluate the scattering response

of quasicrystalline gratings by applying Floquet’s theorem to a
single higher-dimensional unit cell. This approach in essence
extends the RCWA method to aperiodic quasicrystalline
gratings. The derivations of the results for both TE and TM
polarizations are shown in the Methods section.
To test the validity of our approach, we can compare the

results obtained from applying Floquet’s theorem to the 2D
periodic hyperlattice with the results obtained using a 1D
supercell approximation of the QC. An important question to
consider here is how large a supercell must be in order to
accurately reflect the properties of the infinite QC. In fact, this
is another inadequacy of the supercell approach, since if the

Figure 3. Geometry of scattering from a Fibonacci QC grating.
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structure is not large enough to reflect the long-range order of a
QC, then the results will not be accurate. In order to determine
the appropriate size for the supercell, we utilized the Fourier
transform spectra as a gauge. Figure 4 shows the normalized

Fourier spectra (magnitude squared) of Fibonacci point lattices
with 13, 34, and 89 layers corresponding, respectively, to F6, F8,
and F10, as defined in eq 5, evaluated using eq 4. Based on these
results, we chose F8 with 34 layers for our supercell simulations
since it provided a good trade-off between accuracy and
computational complexity. It is worth mentioning that a similar
analysis was done in ref 27 for nanoparticle chains based on
aperiodic morphologies and they reached a similar conclusion,
where it was shown that Fibonacci arrays with as few as 21
particles provided fairly accurate results.
Thus, we consider a Fibonacci supercell consisting of 34

layers, which corresponds to F8, as defined in eq 5. As outlined
previously, the Fibonacci grating is generated from a Fibonacci
sequence by assigning dielectric values εA, εB and thicknesses α,
β to A and B such that α/β = τ. The total width of the supercell
is W = 21α + 13β ≈ 25.7a. The physical setup for all our
examples is illustrated in Figure 3.
For our first example, we consider a Fibonacci grating with

the parameters h = (α + β)/2, εA = 2.152, εB = 2.42, nI = 1, and
nII = 1.5. We consider normally incident TE radiation with 1.5a
< λ0 < 3a, where a is the lattice constant of the 2D hyperlattice.
To analyze the scattering properties of the supercell, we use the
commercially available software package GSolver,28 which is
based on the RCWA algorithm. As it was mentioned before,
application of RCWA requires the truncation of infinite series.
In order to obtain accurate results for the supercell a large
number of terms have to be retained. This is due to the fact that
the supercell has a feature size of β which is very small
compared to its width (β/W ≈ 0.021). Figure 5 shows the total
reflectance of the 1D supercell for three values ofM, whereM is
the maximum order for retained terms, as denoted in eq 21. As
it can be seen from the plot, the reflectance spectra does not
accurately display all the features for M = 20. In order to find
the proper value for M we analyzed the 1D supercell with an
increasing number of terms. As shown in Figure 5 a high degree
of convergence was obtained for M = 40 and we did not
observe any noticeable improvement for increasing M beyond

50. Hence, we used the response for M = 50 to compare with
the results obtained by applying the Floquet’s theorem to the
2D infinite periodic hyperlattice.
Figure 6 shows the total reflectance and transmittance

obtained by applying Floquet’s theorem to the 2D periodic

hyperlattice with M = 10 and those obtained by using a 1D
supercell periodic approximation with M = 50. As it can be seen
from the plot the results are perfectly matched. It is worth
mentioning that retaining a higher order of harmonics which is
required for the supercell approximation can lead to numerical
instability and convergence issues. Furthermore, for several of
our supercell approximations, we had to use quad-precision
format to avoid underflow issues, which significantly increased
the time and memory requirements.
For the second example, we utilized the periodic hyperlattice

approach introduced here to maximize the total reflectance of a
Fibonacci grating for a normally incident TM polarized wave
with λ/a = 2.75. The value for nI was set to unity (i.e., nI = 1)
and a binary genetic algorithm with single point crossover29 was

Figure 4. Normalized Fourier spectra (magnitude squared) of
Fibonacci point lattices with 13, 34, and 89 layers corresponding,
respectively, to F6, F8, and F10, as defined in eq 5, calculated using eq 4.

Figure 5. Reflectance spectrum of the 1D Fibonacci supercell
evaluated for increasing values of retained terms M.

Figure 6. Total reflectance and transmittance obtained by applying
Floquet’s theorem to the 2D periodic hyperlattice (RΣ,2D,TΣ,2D) withM
= 10 and those obtained by using a 1D supercell periodic
approximation (RΣ,1D,TΣ,1D) with M = 50.
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employed to optimize the remaining four parameters, h, εA, εB,
and nII, by minimizing the cost function C defined as

= ΣC T (15)

where TΣ is the total reflectance, as defined in eq 34b.
Figure 7 shows the total reflectance and transmittance for the

optimized Fibonacci grating obtained by applying Floquet’s

theorem to the 2D periodic hyperlattice and those obtained by
using a 1D supercell periodic approximation. The optimized
parameters determined by the genetic algorithm are h = 0.95a,
εA = 2.73, εB = 5.66, and nII = 1.0. For the supercell calculations,
we used the same 34-layer structure as the previous example.
Figure 8 shows the reflectance and transmittance of the
optimized Fibonacci grating for an oblique incident angle of θ =
5°. As before, to verify our results we have also evaluated the
response using the supercell approximation. As it can be seen
from Figures 7 and 8, there is excellent agreement between the
results generated by applying the Floquet’s theorem to the

periodic 2D hyperlattice and those obtained by using a 1D
supercell approximation.

■ METHODS
RCWA for Quasicrystals. RCWA is a widely used method

for accurately predicting the diffraction of EM waves by
periodic structures.22 The method is based on Floquet’s
theorem and Fourier expansion of the fields in the grating
region in terms of space harmonics and applying boundary
conditions to obtain reflection and transmission coefficients for
all diffraction modes. In the physical space, QCs cannot be
analyzed using Floquet’s theorem due to lack of periodicity.
However, analyzing QCs in higher-dimensional space allows
the application of Floquet’s theorem. The 1D Fibonacci QC
grating shown in Figure 3 can be obtained using the cut-and
project method as shown in Figure 2a by setting x  x1. In
order to analyze the scattering response of the QC grating
using RCWA, we consider the TE and TM cases separately.

TE Polarization. We start by considering an obliquely
incident TE polarized plane wave with an angle of incidence of
θ. The incident electric field and wave vector are given in eqs
11 and 10, respectively. As noted earlier, the Fibonacci QC
grating can be obtained from the 2D periodic grating shown in
Figure 2a by setting x  x1 and fixing the value of y. Since the
2D grating is periodic with lattice vectors ae1 and ae2, then the
dielectric function can be expanded in terms of a Fourier
series:30

∑ε ε= ·e e jG r( , ) exp( )1 2
G

G
(16)

where G and r are defined as

π π= ̂ + ̂ ∈ 
m
a

e
n
a

e m nG
2 2

,1 2 (17a)

= ̂ + ̂ ∈ e e e er e e ,1 1 2 2 1 2 (17b)

The value of the Fourier harmonic εG in eq 16 is given by30

∫ ∫ε ε= − ·
a

e e j e eG r
1

( , ) exp( )d d
U

G 2 1 2 1 2 (18)

where the integration is performed over the surface of a unit
cell (U) and the normalization factor a2 is the area of the unit
cell as shown in Figure 2b. For simplicity and without loss of
generality, we assume a = 1. Equation 18 may be evaluated
using numerical quadrature methods, which can be very
computationally expensive particularly since there are multiple
integrals and complex variables involved. However, for our
problem, it was possible to obtain a closed-form expression for
the Fourier harmonics which considerably reduces the
computational burden. For the 2D grating shown in Figure
2b, the closed-form expression for the Fourier harmonic εG is

ε
δ β βπκ τ βπκ τ

π κ τ τ

ε δ β

=
+ −
+ −

| | ≠

+ | | =

ε

ε

⎧
⎨
⎪⎪

⎩
⎪⎪

m n m n
m n m n

G

G

sin[ ( )] sin[ ( )]
( )( )

if 0

if 0
G

2

2 2

A
2

(19)

where κ = 1/(1 + τ2)1/2 and δε = εB − εA. The results in eq 19
are obtained by applying a change of variables to eq 18 and
evaluating it with respect to an xy basis.
The electric and magnetic fields are also periodic in the 2D

hyperlattice and can be expanded in terms of plane waves using
Floquet’s theorem:

Figure 7. Reflectance and transmittance (TM) of the optimized
Fibonacci grating for maximum reflectance at λ/a = 2.75 obtained
from the 2D periodic hyperlattice (RΣ,2D,TΣ,2D) and using the 1D
supercell periodic approximation (RΣ,1D,TΣ,1D) for validation.

Figure 8. Reflectance and transmittance (TM) of the optimized
Fibonacci grating for an oblique incident angle of θ = 5° obtained from
the 2D periodic hyperlattice (RΣ,2D,TΣ,2D) and using the 1D supercell
periodic approximation (RΣ,1D,TΣ,1D) for validation.
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∑= θ− − ·E e e x S x e( , , ) ( )x
G

G
j k n x G r

1 2 3 3
( sin )

2
0 I 1

(20a)

∑
η

=
− θ− − ·H e e x

j
U x e( , , ) ( )x

j k n x G r
1 2 3

0 G
G 3

( sin )
1

0 I 1

(20b)

where η0 = (μ0/ε0)
1/2 is the free space impedance. In the

remainder of the paper, for the sake of brevity, we forego
writing the argument for SG and UG. Unless otherwise stated, it
is always assumed that SG  SG(x3) and UG  UG(x3).
Numerical implementation requires that the infinite series in

eq 20 be truncated to a finite number of terms. Hence, we use a
finite set of reciprocal lattice vectors G such that

π π= ̂ + ̂ | | ≤ | | ≤{ }m
a

n
a

m M n MG
2

e
2

e ,1 2 (21)

The appropriate value for the integer M has to be determined
based on the features of the unit cell and is generally inversely
proportional to its smallest feature size. This is due to the fact
that small variations in the spectral domain correspond to high
frequency terms.
In order to apply the modified Maxwell’s equations defined

in eq 14 to eqs 20a and 20b, it is first required that G and r be
expressed in terms of their parallel and perpendicular
components. Using the orthogonal mapping M from eqs 9
and 8, we rewrite eqs 20a and 20b as

∑= θ− − − ⊥E x y x S e( , , )x
G

G
j k n x G x G y

1 3
( sin )

2
0 I 1 1

(22a)

∑
η

=
− θ− − − ⊥H x y x

j
U e( , , )x

G
G

j k n x G x G y
1 3

0

( sin )
1

0 I 1 1

(22b)

where G∥ and G⊥ are projections of G onto the parallel (x1)
and perpendicular (y) subspaces, respectively. Applying eqs 14a
and 14b to eqs 22a and 22b (∇ × with respect to x1,x3) we
obtain

∂
∂

=
S
x

k UG
G

3
0

(23a)

∑
θ

ε
∂
∂

=
| − |

−
′

− ′ ′
U
x

k n G

k
S k S

sin
G

G
G G G

G

3

0 I
2

0
0

(23b)

The term (k0nI sin θ − G∥) corresponds to the physical
component of the Floquet wave vector in the grating. Denoting
βG  k0nI sin θ − G∥, the total fields in region I (x3 < 0) with
refractive index nI and region II (x3 > h) with refractive index nII
are given by

∑ β= + − − ⊥E E R j x k xexp[ ( )]x x G G G
G

I, inc, 1 I, 32 2
(24a)

∑ β= − − −⊥E T j x k x hexp{ [ ( )]}x G G G
G

II, 1 II, 32
(24b)

where RG and TG are reflection and transmission coefficients for
diffraction modes associated with the reciprocal lattice vector G
of the 2D periodic hyperlattice given in eq 17a. The terms kI,G

⊥

and kII,G
⊥ denote the perpendicular components of the wave

vector for reflected and transmitted modes, which are given by

β= −⊥k n kG GI, I
2

0
2 2

(25a)

β= −⊥k n kG GII, II
2

0
2 2

(25b)

Note that in order for reflected(transmitted) modes to be
propagating, kI,G

⊥ (kII,G
⊥ ) must be real, otherwise they correspond

to evanescent modes.
To obtain all the reflection and transmission coefficients, we

implement a numerically stable and efficient method which was
introduced in ref 31. Equations 23a and 23b can be combined
and written in matrix form as

=
∂

∂ ′

⎡
⎣⎢

⎤
⎦⎥x

A S
S

[ ][ ]
( )G

G
2

3
2

(26)

where x3′ = k0x3 and

= −A K Ex
2

(27)

In eq 27, Kx is a diagonal matrix with elements equal to (βG)/
(k0) and E is a Toeplitz matrix formed from the Fourier series
coefficients in eq 16, with the (G,G′) element being E(G,G′) =
εG−G′. The next step requires eigen decomposition of A as A =
WΛW−1, where W is the matrix of eigenvectors associated with
A and Λ is the diagonal matrix of eigenvalues of A. We define
the diagonal matrix Q whose elements are the positive square
roots of the eigenvalues of A, (QQ = Λ) and the matrix V as V
= WQ. The field harmonics inside the grating can be expanded
as

∑= +
′

′ ′
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where wG,G′, vG,G′, and qG′ correspond to the (G,G′) element of
W, (G,G′) element of V, and the (G′,G′) element of Q,
respectively. The values cG′

+ and cG′
− can be determined by

solving the appropriate boundary conditions. Applying
boundary conditions at x3 = 0 and x3 = h leads to

δ
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where δij is the Kronecker delta function and I is the identity
matrix. Matrices X, YI, and YII are diagonal with elements
e−k0hqG, (kI,G

⊥ /k0), and (kII,G
⊥ /k0), respectively.

Equations 29a and 29b can be simultaneously solved for R
and T. However, in ref 31, it was suggested that a much more
numerically stable approach would be to first analytically
eliminate R and T from eqs 29a and 29b, solve the resulting
system for c+ and c−, and then obtain R and T by substituting
c+ and c− into eqs 29a and 29b. Eliminating R and T from eqs
29a and 29b leads to the following system:

θ δ

− +

+ −
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− −
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(30)
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Once eq 30 is solved for c+ and c−, R and T can be calculated
using

δ= − +
+

−

⎡
⎣⎢

⎤
⎦⎥R W WX c

c
[ ] [ ]G ,0

(31a)
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+

−

⎡
⎣⎢

⎤
⎦⎥T WX W c

c
[ ]

(31b)

The diffraction efficiencies for the reflected and transmitted
modes are defined as32

ζ
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where (x) denotes the real part of x. For a lossless grating,
conservation of energy requires that

∑ ζ ζ+ =( ) 1
G

G GI, II,
(33)

Finally, the total reflectance RΣ and the total transmittance TΣ
may be determined by using the following expressions:

∑ ζ=ΣR
G

GI,
(34a)

∑ ζ=ΣT
G

GII,
(34b)

TM Polarization. The steps in the development for the TM
case are very similar to those taken in the TE case. The incident
magnetic field is given in eq 12. The fields are periodic in the
2D hyperlattice and can be expanded as Floquet modes:
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(35a)
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( sin )
1
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(35b)

Rewriting G and r in terms of their parallel (x1) and
perpendicular (y) components and applying eqs 14a and 14b
(∇ × with respect to x1,x3) we obtain a set of coupled wave
equations that can then be reduced to the following system:

=
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( )G
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2
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where B = KxE
−1Kx − I and E and Kx are defined as in eq 27.

Analogous to the TE case, we start by considering the
eigendecomposition of matrix EB as EB = ΩΔΩ−1, where Ω is
the matrix of eigenvectors associated with EB and Δ is the
diagonal matrix of eigenvalues of EB. We then define a diagonal
matrix Θ whose elements are the positive square roots of the
eigenvalues of EB (ΘΘ = Δ) and a matrix Γ as Γ = E−1ΩΘ.
The field harmonics inside the grating can be expanded as
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(37b)

Applying boundary conditions at x3 = 0 and x3 = h leads to a set
of equations that can be simultaneously solved for reflection
and transmission coefficients; however, as was the case for TE
polarization, a significantly more stable and efficient approach
would be to first solve for c+ and c− by analytically eliminating
R and T. We have not included the derivations, but the
following system can be obtained by eliminating R and T from
the boundary condition equations:
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where X is defined similar to the TE case such that ZI and ZII
are diagonal matrices with elements (kI,G

⊥ /k0nI
2), and (kII,G

⊥ /
k0nII

2 ), respectively. Once eq 38 is solved for c+ and c−, R and T
can be calculated using
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The diffraction efficiencies for reflected and transmitted TM
modes are given by32
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■ CONCLUSION
We have presented a rigorous method to analyze the scattering
properties of aperiodic QCs. The technique is based on the cut-
and-project method which models QCs as irrational projections
of higher-dimensional periodic hyperlattices onto the physical
space. Due to the translational symmetry of the hyperlattice the
solution domain is reduced to a single higher-dimensional
hypercube.
It was shown that Maxwells equations can be directly applied

to the higher-dimensional lattice by treating the unphysical
dimensions as parameters rather than spatial coordinates. This
is due to the fact that unphysical dimensions merely correspond
to an offset parameter for the cut-and-project method and have
no effect on the eigenvalues of the physical system.20 Based on
the modified Maxwell’s equations and application of Floquet’s
theorem to the periodic hyperlattice, we derived results for
application of the RCWA method to QC gratings. The most
significant advantage of our results is that it reflects the
properties of the infinite QC grating as opposed to previous
methods that approximate QCs as periodic truncated super-
cells.
As an example, we considered the Fibonacci QC, which can

be obtained as a 1D slice of a 2D periodic lattice. Several cases
were considered that included both TE and TM polarizations
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as well as normal and oblique incidence angles. In all cases our
results were confirmed by supercell approximations.
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